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Abstract. Reversible watermarking is a useful technique for some ap-
plications requiring high image quality because it can restore what the
original images are as well as protect them. In this paper, a high capac-
ity image reversible watermarking is proposed based on classified neural
network. According to the variance of surrounding pixel values, all pixel
cells are classified as smooth part or rough part. Correspondingly, two
neural networks are designed for smooth pixel prediction and rough pixel
prediction, respectively. The watermark is embedded in the prediction
errors. In addition, a retesting strategy utilizing the parity detection is
presented to increase the capacity of the algorithm. Experimental results
show that this algorithm can get smaller prediction error and obtain both
higher capacity and good visual quality.

Keywords: Reversible watermarking, classified neural network,
retesting strategy.

1 Introduction

Reversible watermarking can recover the original digital contents without any
distortion after data have been extracted. It has been an active research topic
for the applications where the availability of the original content is essential. So
far, many schemes have been proposed.

Early reversible watermarking algorithms mainly utilize lossless compression
to provide space for data embedding. A more effective algorithm is histogram
shifting, introduced by Ni et al.[1], which moves the histogram bars to achieve
low distortion. Another productive approach is difference expansion algorithm,
which was proposed by Tian [2]. The method divides the image into pairs of
pixels and uses each legitimate pair for hiding one bit of information. It has high
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embedding capacity and good quality, which becomes the basic idea of some re-
versible watermarking methods. Higher capacity and better visual quality is the
main purpose that reversible watermarking methods pursue. Recently, predic-
tion error expansion (PEE) method has been proposed by Thodi et al.[3]. The
method uses PEE to embed data, and suggests incorporating expansion embed-
ding with histogram shifting to reduce the location map. Since then, several
PEE-based methods have been proposed [4–8]. In [7], Sachnev et al. proposed
a method which combined sorting and two-pass-testing with prediction error
expansion method. The algorithm obtains higher capacity and lower distortion
than most of existing reversible watermarking methods.

In this paper, a high capacity image reversible watermarking is proposed based
on classified neural network. Considering the global feature, the neural network
is used to predict the prediction error. According to the variance of surrounding
pixel values, the pixel cells are classified as smooth part or rough part. Corre-
spondingly, two neural networks are designed for smooth pixel prediction and
rough pixel prediction, respectively. The watermark is embedded in the predic-
tion errors. Because the actually embedded data is not always identical with the
testing bit, some ambiguous pixel cells appear. A retesting strategy utilizing the
parity detection activates the capacity of these ambiguous pixel cells. As a result,
the capacity is increased. The experimental results show that this algorithm can
obtain higher capacity and preserve good visual quality.

2 Proposed Algorithm Based on Classified Neural
Network and Retesting Strategy

In the proposed algorithm, all pixels of the image are divided into two sets:
the “Cross” set and the “Dot” set (Fig.1) [7]. The watermark bits are firstly
embedded in the “Cross” set, and then embedded in the “Dot” set.

Fig. 1. “Cross” set and “Dot” set Fig. 2. Structure of neural network

2.1 Prediction Based on Classified Neural Network

During the “Cross” embedding, the “Cross” set is used for embedding data
while the “Dot” set works as the reference signals. And vice versa. The center
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pixel of a cell is predicted by the four neighboring pixels. In this paper, neural
network is used to predict the pixel value considering the global feature. Since
four pixels in the neighboring context are utilized to calculate the prediction
value, the structure of the neural network is shown in Fig.2. The input layer has
four neurons and the hidden layer is created with three neurons. The output
layer has one neuron which refers to the central pixel value.

The corresponding weights and parameters can be determined by training.
Considering the global influence and generalization, a great number of pixel cells
from the original image are input to the neural network to obtain the models
of prediction. Based on the variance of a central pixel’s context, a pixel cell is
assigned as a smooth one or a rough one. Subsequently, the pixel cells in smooth
area are gathered to train a “smooth” neural network. And the pixel cells in
rough area are used to obtain a “rough” neural network. Thus, the prediction
value u

′
i,j is deduced using smooth neural network or rough neural network.

u
′
i,j =

⎧
⎪⎪⎨

⎪⎪⎩

�smoothPredict(vi,j−1, vi−1,j , vi,j+1, vi+1,j)�
if vari,j < Tvar

�roughPredict(vi,j−1, vi−1,j , vi,j+1, vi+1,j)�
if vari,j ≥ Tvar

(1)

where, �.� is a floor function. smoothPredict(·) is the predictor for pixels in
smooth region, and roughPredict(·) is the predictor for pixels in rough region.
vari,j means the variance of the context of ui,j , which is restricted by Tvar.

2.2 Basic Data Embedding and Extraction

The combination of difference expansion and histogram shifting method pro-
posed by [3] is also used in this paper.

If the prediction error ei,j = ui,j − u
′
i,j is within the region [Tn, Tp], ei,j

is expanded to Ei,j = 2 × ei,j + b. Tn is the negative threshold and Tp is
the positive threshold. Otherwise, if the prediction error belongs to the re-
gion (−∞, Tn) ∪ (Tp,∞) , the pixel does not carry any data and the prediction
error is simply shifted as: Ei,j = ei,j + Tp + 1, if ei,j > Tp and Tp ≥ 0;Ei,j =
ei,j + Tn, if ei,j < Tn and Tn < 0. That is,

Ei,j =

⎧
⎨

⎩

2× ei,j + b if ei,j ∈ [Tn, Tp]
ei,j + Tp + 1 if ei,j > Tp and Tp ≥ 0
ei,j + Tn if ei,j < Tn and Tn < 0

(2)

The watermarked value is computed by Ui,j = u
′
i,j + Ei,j .

During extraction, if Ei,j ∈ [2Tn, 2Tp +1], b = Ei,jmod2, and ei,j = �Ei,j/2�;
if Ei,j > 2Tp + 1, ei,j = Ei,j − Tp − 1; if Ei,j < 2Tn, ei,j = Ei,j − Tn. That is,

ei,j =

⎧
⎨

⎩

�Ei,j/2� if Ei,j ∈ [2Tn, 2Tp + 1]
Ei,j − Tp − 1 if Ei,j > 2Tp + 1
Ei,j − Tn if Ei,j < 2Tn

(3)

Then, ui,j = u
′
i,j + ei,j .
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2.3 Retesting Strategy Using Parity Property

To reduce the length of location map, two-pass-testing was proposed [7]. If a
pixel can be modified twice based on Eq.(2), it belongs to Class A; if the pixel is
modifiable only once due to overflow or underflow during the second embedding
test, the pixel belongs to Class B; if the pixel cannot be modified even once, it
belongs to Class C. During the testing process, bit “1” is used as an embedding
bit for positive prediction errors, and bit “0” is for negative prediction errors.
The positions of Class B and Class C are marked in a location map, which is
also embedded with the payload.

In the decode phase, use once-embedding-test to distinguish Class A, and
Class B(or Class C). And further discriminate Class B and Class C using the
location map. As mentioned in [7], during extraction phase, some pixel cells
belonging to Class B will be misclassified to Class A if the actually embedded
data equals “0” for positive prediction errors or “1” for negative ones. The case
is caused because that the real embedded bit does not coincide with the testing
bit. The shiftable pixel cells in Class B are shifted in both embedding phase
and extraction phase, so this part of pixels can be correctly identified using
once-embedding-test during the extraction procedure. As for the expandable
pixel cells in Class B, bit “1” is used to test the overflow for positive prediction
errors. When the to-be-embedded bit is “0”, some pixels do not exceed 255 even
undergoing the second embedding test.

To avoid the influence of the misclassification, Sachnev’s method sacrifices the
capacity of Class B. The fixed information is embedded in the expandable pixel
cells in Class B, that is, bit “1” is always embedded in all the positive prediction
errors and bit “0” for all the negative prediction errors. However, many images
may contain a certain number of pixels of Class B. Rational use of Class B can
increase the capacity of the algorithm. We utilize the parity characteristic and
retesting strategy to activate the capacity of Class B.

After once-embedding-test during the extraction phase, the pixel cells are as-
signed into two parts: Part One contains the cells without overflow or underflow,
and Part Two contains the overflow or underflow cells. As a result, Part One
is the set consisting of Class A and partial Class B, while Part Two is the set
containing Class C and part of Class B. It is obvious that the elements of Class
B which are attributed in Part One are problem pixel cells. Since they will cause
wrong localization in the location map, the problematic pixel cells should be
identified further.

For the cells in Part One, a retesting detection is designed to distinguish
the ambiguous cells belonging to Class B. As for the expandable pixel cells,
Ui,j = u

′
i,j + Ei,j = u

′
i,j + 2ei,j + b. Thus, Ui,j − u

′
i,j = 2ei,j + b. Due to 2ei,j is

an even number, b = LSB(Ui,j−u
′
i,j), here LSB(x) means the Least Significant

Bitplane of x. For the positive prediction errors, if Ui,j −u
′
i,j is an even number,

the embedded bit is not consistent with the testing bit. Fortunately, the pixel
values can be adjusted to fit the case to the two-pass-testing. It is obvious that
the difference between embedding “1” and embedding “0” equals 1. Thus, add
one to the pixel value Ui,j and retest the corresponding prediction error using
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the testing bit “1”. For the negative prediction errors, if Ui,j − u
′
i,j is an odd

number, subtract one from the pixel value Ui,j and retest the corresponding
prediction error using the testing bit “0”. If the retesting result shows the pixel
cell is overflow or underflow, it belongs to Part Two. Otherwise, it still belongs
to Part One. After the retesting, Part One only contains Class A, and Part Two
contains Class B and Class C. Further classification is conducted to distinguish
Class B and Class C with the help of the location map. The pseudo-code below
describes the retesting process.

Algorithm 1. Retesting Strategy During Extraction

Embedding Test to get Ū
if Ū is overflow or underflow then

U ∈ Part Two
else

U ∈ Part One
For Expanded Pixel Cells in Part One
if U − u

′
is even then

U ⇐ U + 1
Retesting using bit “1”

end if
if U − u

′
is odd then

U ⇐ U − 1
Retesting using bit “0”

end if
if Ū is overflow or underflow then

U ∈ Part Two
end if

end if

3 Encoder and Decoder

3.1 Data Embedding

We first embed data in “Cross” set, then embed in “Dot” set. To recover data,
threshold values Tn(7 bits), Tp(7 bits), payload size |Pcross|(18bits) or payload
size |Pdot|(18bits), length of location map (18bits), and the position of the last
processed prediction error (18bits) should be known first. We will embed these
68 bits into the first 68 pixel values’ LSB. In addition, the parameters of the
neural network are vital to data embedding and extraction. The structure of the
neural network we used possesses 4 inputs, 3 hidden layers, and 1 output. There
are 15 weights and 4 biases to constitute 19 parameters. Due to there are two
neural networks involved in the prediction phase, 38 parameters are necessarily
stored in the image. If 15 bits are used to record one parameter, 570 bits in
total are used to determine the specific neural networks. The parameters of the
neural network are embedded once, that is, the parameters will be embedded
in the “Dot” set. In result, in “Cross” embedding, only 68 auxiliary bits need
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to be embedded, while in “Dot” embedding, 638 auxiliary bits including the
neural network parameters need to be stored in the image. The auxiliary bits
are embedded in the front pixel values by using simple LSB replacement method.
Accordingly, the original LSB values should be recorded with the payload.

The embedding method is designed as follows, taking “Cross” set for example:
Step 1: Calculate the prediction errors. For each pixel ui,j, compute the pre-

diction value and the corresponding prediction error ei,j based on the smooth
neural network or the rough neural network.

Step 2: Sort the prediction errors. For each pixel ui,j, compute the variance
V ari,j of four neighbor pixels, which is used as the sorting parameter. Skip
the first 68 pixels which will be used to carry the auxiliary bits. Sort the pixel
cells according to the ascendingly sorted {V ari,j} to produce a sorted row of
prediction errors esort.

Step 3: Determine the threshold. According to the two-pass-testing, all pixels
are classified in one of classes A, B and C. Although the shiftable pixels can be
modified, they cannot carry watermark bits. Only can the expandable pixels in
Class A and Class B be capable of carrying data. Let set of expandable pixels
in class A be EA. Let set of expandable pixels in class B be EB.

In the sorted prediction errors esort, create the location map L. If a pixel
belongs to Class B, the corresponding element in the location map is marked as
“0”; while if the pixel belongs to Class C, it is marked as “1” in the location map.
If |Pcross| ≤ |EA|+ |EB|− |L|− 68 and |EA| ≥ |L| are both satisfied, the to-be-
embedded bits can be successfully embedded. Here, |.| means the cardinality of
the set. Otherwise, increase the threshold Tp or decrease Tn, and repeat Step.3.

Step 4: Embed data. The location map L, the true payload Pcross, and the first
68 LSBs are embedded in the “Cross” part of the image by using the embedding
method described in section 2.2. The location map L is firstly embedded in Class
A. The elements belonging to Class A and Class B are all used to improve the
capacity. If the last to-be-embedded bit is processed, the position of the last
processed element is recorded, which implies how many prediction errors have
been used. Then, use the auxiliary data to modify the LSB values of the first 68
pixels by simple binary replacement.

After 4 steps, the “Cross” embedding process is finished. The “Dot” embed-
ding scheme uses the modified pixels from the “Cross” set for computing the
predicted values. The original pixels from the “Dot” set are used for embedding
data, and the embedding procedure is similar to the “Cross” embedding. Only
difference relies on the size of the auxiliary information because the parameters
of neural network are embedded in the “Dot” part. After the “Dot” embedding,
the watermarked image is obtained.

3.2 Data Extraction

During extraction phase, data in “Dot” set are extracted firstly, then the “Cross”
set will be decoded. The parameters of neural network can be read from the LSBs
of “Dot” set, which are used for pixel prediction both in “Cross” set and “Dot”
set. We only describe the “Cross” decoding method in details below,
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Step1: Recover the thresholds and calculate the prediction values. Read LSB
values from the first 68 pixels to recover the values of Tn, Tp, payload size |Pcross|,
and the position of the last processed prediction error. For each pixel value
Ui,j , compute the prediction value based on the corresponding neural network.
Afterwards, the prediction error Ei,j is obtained.

Step2: Sort the prediction errors. Skip the first 68 pixels. Sort the pixels
according to {V ari,j} to get a set of sorted prediction errors Esort.

Step3: Extract the watermark. Test every pixel cell to classify it into Part One
or Part Two. In detail, bit “1” is used as a testing watermark and embedded
in the positive prediction errors. While bit “0” is embedded in the negative
prediction errors. If the embedded pixel intensity exceeds the pixel range [0,255],
it belongs to Part Two. If the pixel value still stays in the pixel range, it belongs
to Part One which implies that the pixel may come from Class A. Because some
pixel cells belonging to Class B are misclassified to Class A, further testing is
conducted to recognize the problem elements in Part One. For the expandable
pixels in Part One, if Ui,j−u

′
i,j is even and positive, add one to Ui,j and retest the

corresponding pixel using the testing bit “1”. If Ui,j − u
′
i,j is odd and negative,

subtract one from Ui,j and retest the corresponding pixel using the testing bit
“0”. If the retesting result shows the pixel is overflow or underflow, it belongs to
Part Two. Otherwise, it still belongs to Part One. After the retesting, Part One
is Class A, and Part Two contains Class B and Class C. Extract location map
from Class A firstly. Further classification is conducted to distinguish Class B
and Class C based on the location map. Then, extract data from Class A and
Class B, meanwhile recover the original prediction errors using the method in
section 2.2. The extraction procedure is only applied to the embedded prediction
errors according to the position of the last processed element. The extracted data
is the cascading of the true payload and the 68 LSBs.

Step4: Restore the original image. Computer the original pixel values based
on ui,j = u

′
i,j + ei,j .

Step5: Recover the rest pixels. Replace the first 68 LSB values of the pixels
with the extracted 68 LSBs.

When the “Dot” and “Cross” decoding are both finished, the entire watermark
is obtained and the original image is restored.

4 Experimental Results

Several 8-bit gray images with size 512× 512 are used in the experiments. Fig.3
shows the original images: “Lena”, “Baboon” and “Plane”.

The maximum capacity under a certain threshold region is compared between
the proposed algorithm and the one in [7]. Take “Lena” image for example, and
use the same threshold region for both “Cross” set and “Dot” set. Table 1 gives
their maximum capacities. Our method can get higher capacity.
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(a) Lena (b) Baboon (c) Plane

Fig. 3. The original gray images

Table 1. Maximum Capacity Comparisons for “Lena”

threshold [Tn Tp] max capacity of our(bits) max capacity of [7](bits)

[-2 2] 158429 157355
[-3 3] 191848 190725
[-5 5] 227781 226567
[-7 7] 243237 242167
[-9 9] 250553 249686

Fig.4 shows the performances of Capacity vs. Visual quality in terms of pay-
load and PSNR(Peak Signal-to-Noise Ratio). The horizontal axis represents the
capacity in terms of bpp(bits per pixel). The vertical axis represents the corre-
sponding PSNR. The results show that our method have both high visual quality
and high capacity. Compared with [7], our method can achieve better results for
“Lena” and “Baboon”, and get comparable result for “Plane”. The reason is the
neural network may not be trained well.

5 Conclusions

In this paper, we propose a high capacity image reversible watermarking based on
classified neural network and retesting strategy. Considering the global feature,
two neural networks are designed for smooth pixel prediction and rough pixel
prediction, respectively. The parameters of the neural network are also stored
in the image. Furthermore, a retesting strategy utilizing the parity detection
activates the capacity of the ambiguous pixel cells. As a result, the capacity
is increased. The watermark is embedded in the prediction errors combining
expansion and shifting methods. Experimental results show that the proposed
algorithm can obtain higher capacity and preserve good visual quality.
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(a) Result for “Lena”
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(b) Result for “Baboon”
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(c) Result for “Plane”

Fig. 4. Capacity vs. PSNR for testing images
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